f(x,y) = C f (x, y) = C
Mengambil gradien kita
f x (x,y)i + f y (x,y)j = 0 f x (x, y) i + f y (x, y) j = 0
Kita dapat menulis persamaan ini dalam bentuk diferensial
f x (x,y)dx+ f y (x,y)dy = 0 f x (x, y) dx + f y (x, y) dy = 0
Sekarang bagi dengan dx (kita tidak berpura-pura menjadi ketat di sini) untuk mendapatkan
f x (x,y)+ f y (x,y) dy/dx = 0 f x (x, y) + f y (x, y) dy / dx = 0
Yang merupakan persamaan diferensial orde pertama. Tujuan dari bagian ini adalah untuk pergi ke belakang. Itu jika persamaan diferensial jika bentuk di atas, kita mencari asli fungsi f (x, y) (disebut sebagai potensi fungsi). Persamaan diferensial dengan fungsi potensial disebut tepat . Jika Anda telah vektor kalkulus, ini adalah sama dengan menemukan potensi fungsi dan menggunakan teorema dasar integral garis.
Contoh
Memecahkan
4xy + 1 + (2x 2 + cos y)y’ = 0 4xy + 1 + (2x 2 + cos y) y ‘= 0
Solusi
Kami mencari fungsi f (x, y) dengan
f x (x, y) = 4xy + 1 dan f y (x, y) = 2x 2 + cos y
Mengintegrasikan persamaan pertama terhadap x untuk mendapatkan
f (x, y) = 2x 2 y + x + C (y) Perhatikan karena y diperlakukan sebagai konstan,. kita menulis C (y).
Sekarang ambil turunan parsial terhadap y untuk mendapatkan
f y (x,y) = 2x 2 + C’(y) f y (x, y) = 2x 2 + C ‘(y)
Kami memiliki dua rumus untuk f y (x, y) sehingga kami dapat mengatur mereka sama dengan eachother.
2x 2 + cos y = 2x 2 + C’(y) 2x 2 + cos y = 2x 2 + C ‘(y)
Itu
C’(y) = cos y C ‘(y) = cos y
atau
C(y) = sin y C (y) = sin y
Dengan demikian
f(x,y) = 2x 2 y + x + sin y f (x, y) = 2x 2 y + x + sin y
Solusi terhadap persamaan diferensial
2x 2 y + x + sin y = C 2x y + 2 x + sin y = C
Apakah metode ini selalu bekerja? Jawabannya adalah tidak. Kita dapat mengetahui apakah metode bekerja dengan mengingat bahwa untuk fungsi dengan turunan parsial yang kontinu, campuran urutan parsial adalah independen. Itu f xy = f yx f xy = f yx
Jika kita mempunyai persamaan diferensial
M(x,y) + N(x,y)y’ = 0 F (x, y) + N (x, y) y ‘= 0
maka kita mengatakan itu adalah persamaan diferensial yang tepat jika
M y (x,y) = N x (x,y) M y (x, y) = N x (x, y)
Tidak ada komentar :
Posting Komentar